package com.thealgorithms.datastructures.trees;
import com.thealgorithms.datastructures.trees.BinaryTree.Node;
/**
*
*
* <h1>Binary Search Tree (Recursive)</h1>
*
* An implementation of BST recursively. In recursive implementation the checks
* are down the tree First root is checked if not found then its children are
* checked Binary Search Tree is a binary tree which satisfies three properties:
* left child is less than root node, right child is grater than root node, both
* left and right children must themselves be a BST.
*
* <p>
* I have made public functions as methods and to actually implement recursive
* approach I have used private methods
*
* @author [Lakhan Nad](<a href="https://github.com/Lakhan-Nad">git-Lakhan Nad</a>)
*/
public class BSTRecursive {
/**
* only data member is root of BST
*/
private Node root;
/**
* Constructor use to initialize node as null
*/
BSTRecursive() {
root = null;
}
public Node getRoot() {
return root;
}
/**
* Recursive method to delete a data if present in BST.
*
* @param node the current node to search for data
* @param data the value to be deleted
* @return Node the updated value of root parameter after delete operation
*/
private Node delete(Node node, int data) {
if (node == null) {
System.out.println("No such data present in BST.");
} else if (node.data > data) {
node.left = delete(node.left, data);
} else if (node.data < data) {
node.right = delete(node.right, data);
} else {
if (node.right == null && node.left == null) { // If it is leaf node
node = null;
} else if (node.left == null) { // If only right node is present
Node temp = node.right;
node.right = null;
node = temp;
} else if (node.right == null) { // Only left node is present
Node temp = node.left;
node.left = null;
node = temp;
} else { // both children are present
Node temp = node.right;
// Find leftmost child of right subtree
while (temp.left != null) {
temp = temp.left;
}
node.data = temp.data;
node.right = delete(node.right, temp.data);
}
}
return node;
}
/**
* Recursive insertion of value in BST.
*
* @param node to check if the data can be inserted in current node or its
* subtree
* @param data the value to be inserted
* @return the modified value of the root parameter after insertion
*/
private Node insert(Node node, int data) {
if (node == null) {
node = new Node(data);
} else if (node.data > data) {
node.left = insert(node.left, data);
} else if (node.data < data) {
node.right = insert(node.right, data);
}
return node;
}
/**
* Serach recursively if the given value is present in BST or not.
*
* @param node the current node to check
* @param data the value to be checked
* @return boolean if data is present or not
*/
private boolean search(Node node, int data) {
if (node == null) {
return false;
} else if (node.data == data) {
return true;
} else if (node.data > data) {
return search(node.left, data);
} else {
return search(node.right, data);
}
}
/**
* add in BST. if the value is not already present it is inserted or else no
* change takes place.
*
* @param data the value to be inserted
*/
public void add(int data) {
this.root = insert(this.root, data);
}
/**
* If data is present in BST delete it else do nothing.
*
* @param data the value to be removed
*/
public void remove(int data) {
this.root = delete(this.root, data);
}
/**
* To check if given value is present in tree or not.
*
* @param data the data to be found for
*/
public boolean find(int data) {
if (search(this.root, data)) {
System.out.println(data + " is present in given BST.");
return true;
}
System.out.println(data + " not found.");
return false;
}
}