The Algorithms logo
The Algorithms
AboutDonate

Board Path

a
S
A
R
package com.thealgorithms.dynamicprogramming;

/*
* this is an important Algo in which
* we have starting and ending of board and we have to reach
* we have to count no. of ways
* that help to reach end point i.e number by rolling dice
* which have 1 to 6 digits

Test Case:
here target is 10

int n=10;
                startAlgo();
                System.out.println(bpR(0,n));
                System.out.println(endAlgo()+"ms");
                int[] strg=new int [n+1];
                startAlgo();
                System.out.println(bpRS(0,n,strg));
                System.out.println(endAlgo()+"ms");
                startAlgo();
                System.out.println(bpIS(0,n,strg));
                System.out.println(endAlgo()+"ms");



 */
public class BoardPath {

    public static long startTime;
    public static long endTime;

    public static void startAlgo() {
        startTime = System.currentTimeMillis();
    }

    public static long endAlgo() {
        endTime = System.currentTimeMillis();
        return endTime - startTime;
    }

    public static int bpR(int start, int end) {
        if (start == end) {
            return 1;
        } else if (start > end) {
            return 0;
        }
        int count = 0;
        for (int dice = 1; dice <= 6; dice++) {
            count += bpR(start + dice, end);
        }
        return count;
    }

    public static int bpRS(int curr, int end, int[] strg) {
        if (curr == end) {
            return 1;
        } else if (curr > end) {
            return 0;
        }
        if (strg[curr] != 0) {
            return strg[curr];
        }
        int count = 0;
        for (int dice = 1; dice <= 6; dice++) {
            count += bpRS(curr + dice, end, strg);
        }
        strg[curr] = count;
        return count;
    }

    public static int bpIS(int curr, int end, int[] strg) {
        strg[end] = 1;
        for (int i = end - 1; i >= 0; i--) {
            int count = 0;
            for (int dice = 1; dice <= 6 && dice + i < strg.length; dice++) {
                count += strg[i + dice];
            }
            strg[i] = count;
        }
        return strg[0];
    }
}